
3rd NASA Symposium on VLS[Design 199I

N94-18366
8.3.1

Formal Verification of an MMU and MMU Cache

E. T. Schubert

Division of Computer Science

University of California, Davis

Abstract - We describe the formal verification of a hardware subsystem consist-

ing of a memory management unit and a cache. These devices are verified in-

dependently and then shown to interact correctly when composed. The MMU

authorizes memory requests and translate virtual addresses to real addresses.

The cache improves performance by maintaining a LRU llst from the memory

resident segment table.

1 Introduction

Computers are being used in areas where no affordable level of testing is adequate. Safety

and life critical systems must find a replacement for exhaustive testing to guarantee their

correctness. Through a mathematical proof, hardware verification can formally demon-

strate that a design satisfies its specification. However, hardware verification research has

focused on device verification and has largely ignored system composition verification [1].

Our research is directed towards developing a methodology to verify a hardware base for

a safety critical system. The top level hardware specification is apt to suggest a unitaxy

implementation. This abstraction is convenient for verifying the correctness of software,

however, the implementation consists of many different interacting components (CPU,

memory, coprocessors, I/O devices, bus controllers, interrupt controllers, etc). This paper

will describe our efforts to verify a subsystem consisting of a MMU and its cache using the

HOL theorem prover [2].

The abstract MMU reported in [3] assumed a memory model where a read request was

satisfied in one cycle. We extend the MMU to interact with an asynchronous memory.

Additionally, the memory is more fully described; providing read and write functions.

These changes required several significant changes to the abstract MMU proof script. The

original proof strategy took advantage of the single cycle response time. The new strategy

must use two arbitrary contents to define when memory words are returned from the

memory-cache subsystem.

1.1 Related Work

Hardware verification requires that the design of a system is formally shown to satisfy

its specification through a mathematical proof. Using theorem proving technlques_ an

expression describing the behavior of a device is proven to be equivalent in some sense

to an expression describing the implementation structure of the device. These expressions

concisely describe the behavior of devices in an unambiguous way. An additional benefit of

hardware verification is that the behavioral semantics of the hardware are clearly defined.

This provides an accurate basis for building correct software systems [5].

8.3.2

Hardware verification efforts thus far have focused primarily on a microprocessor as

the base for computer Systems [6], [7], [8], [9]. Tl_-processors verifledhave modeled small

instruction sets and generally, have not included modern CPU features such as pipelines,

multiple functional units and lmr_ware_nterrupt-supportl Tamarack-3 [9] and AVM-1 [10]

do provide sufficient interrupt support to connect with an interrupt controller. However, no

systern currenflYTesiiqed prov!des !he memory management functions necessary t0support

a secure operating sy_st¢_..............................

*_ _revious_efforts to verii'y systems haveconstructed_verticailv verified systems with- a

microprocessor/memory as the system's base [11],[5],[1]. These efforts have aimed at il-

lustrating how hardware verification can be used to close the semantic gap between high

ie-VeI Ianguages and tile computer,s instructlon set. _owever, the base for these systems(a

microprocessor-memory pair) has been an unrealistic hardware platform.

1.2 HOL

The object languageof HOL is a formulation of higher-order logic. Universally quantified

variables are used to specify input and output device _nes while internai device lines are

existentially quantified. Conditional expressions are in the form: concl -+thon-elauso [

I/OL provideSthe human verifier wlth a selection of tactics for use in goai-directed

proofs. The tactics are very similar to the kinds of steps a human theorem prover would

take in soiving a goail New tactics can be wrltten_that a_ow the theorem prover to be

extended and customized for a particular task. New theorems can only be created in

a controlled manner. All proofs can be reduced to one containing only the 8 primitive

inference rules and 5 primitive axioms. High-level inference rules and tactics derived from

some combination of primitiv e inference rules.

The following i-i0L-expression defines an and gate implementation using an inverter

and a nand gate. The existentially quantified variable p, represents an internal line which

links the output of the hand gate with the input of the inverter.

_e/andGato a b out 3p.nand a b p A inv p oug

2 Memory Management Unit

[12] describes a number of memory management units which form a complexity hierarchy.

By developing a sophisticated MMU in steps, the construction of the final proof appears

to be more tractaDie. The simpler devices validate access toqqxed-lengHa memory _ages

while the more complex devices authorize read, write or execute access to variable length

segments and translate virtual addresses to real addresses. Many of these devices were

designed and verified to_ti_e gate level. However,ks the compiexity increases, the emphasis

of the verification shifts from gate level connections to the correctness of the operating

system support fe4_eS. =_ _

The device described below v_dates memory requests based on information maintained

in a memory res!dent segment descriptor table. The location of the table is determined by a

3rd NASA Symposium on VLSI Design 1991 8.3.3

segment table pointer register which is accessible only during supervisor operations. Each

descriptor consists of two words: the first contains access control information (present bit,

read/write/execute permissions, segment size) and the second serves as the base address

for the segment's real location in memory. To translate from a virtual address to a real

address, the MMU adds the segment offset to the segment base address. The MMU assumes

the table provides an entry for all possible segment descriptors.

A generic theory for a class of MMU devices is defined where several functions and

data types are left abstract. Using an abstract representation, details such as word length,

can be omitted and the verification focuses only on the correctness of higher level abstrac-

tion (e.g. electronic block level rather than gate level). At a later point, the abstract

representation can be instantiated with components that implement concrete behavior.

Support for generic or abstract theories is not directly provided by HOL. However,

a theory about abstract representations can be defined in the object language [10]. An

abstract representation contains a set of uninterpreted constants, types, abstract operations

and a set of abstract objects. The semantics of the abstract representation is unspecified.

Inside the theory, we do not know what the objects and operations mean. The abstract

theory package also creates a set of selector functions [11] to extract desired functions from

an abstract representation.

The abstract MMU representation generalizes traits particular to concrete implemen-

tations. Properties such as the the exact security policy and division of a virtual address

into a segment identifier and offset (as well as the overall number of bits in an address),

are hidden by functions which given an address, return the segment identifier or segment

offset field (segId and seg0fs, respectively). There is also a function segIdshf which

returns the offset of a segment descriptor within the memory resident segment table for

a given address. Since descriptors require two words, the implementation of this function

simply shifts the segment identifier to the left one bit position (e.g. it adds a trailing zero

bit).

The abstract functions selected by availBit, readBit, ,riteBit and execBit extract

a bit value from an argument of type *wordn. These functions are applied to the first word

of a segment descriptor.

Several functions which operate on two-tuples are available. Given a pair of *wordn

values, add returns a value of *wordn. Functions addrEq, ofsLEq and validlccess replace

the bitVector comparison units defined for the more concrete units.

Additional abstract coercion functions are available to convert values between types. If

the theory were instantiated, the abstract types would likely be implemented with bitVec-

tors; leaving these functions unnecessary.

Memory is also treated abstractly. The abstract representation provides a fetch function

fetch.

8,3,4

let nu_abs =
[
('segId',

('segOfs',
('segIdshf',

('availBit',
('readBit',
('writeBit',
('execBit'.

new.abstract_representation

":(*address -> *uordn)");

":(*address -> *.ordn)");

":(*address -> *.ordn)");
":(*.ordn -> bool)");
":(*uordn -> bool)") ;

":(*wordn -> bool)");
":(*wordn -> bool)");

'add', ":(*wordn # *wordn ->*wordn)");
_'addrEq', ":(*address # *address -> bool)");

('ofsLEq', ":(*address # *wor_dn =>bool)");
('validAccess'_ _

"i(*address='#=*wordn# RWE '> bool)");
('val', ":(*uordn -> num)");
('.ordn', ":(hum-> *worcln)");
('address', ":(*.ordn -> *address)")|

('fetch', ":(*memory # *address) -> *wordn");

A type abbreviation RWE is also defined to be a three tuple of bit values. Selector

functions rBIT, wBIT and oBIT access the first, second and third bits, respectively.

2,1 Specification

#he Specification is decomp0sedint0 several rules and ignores timing characteristics. The

state and output environment of the MMU specification is a three-tuple consisting of a

boolean acknowledgment, a memory address and the table pointer register value. The

variable r in the definitions below is the abstract representation.

Functions suporModo and usorModo describe the behavior of the MMU when operating
in their respective modes, legalAccoss uses many of the abstract functions to fetch

from memory theb_i_prOp'r[atesegm_t descriptor and compare _-_t_itI_the re-uest's a--_e--ss
parameters, vToR constructs a real address from a virtual addreSS_ ::_

bd41egalAccess r vAddr tblPtr rwe mem = let a = (fetch r)(mem,(address r)((add r) (segIdslff r

vAddr,tblPtr))) in ((validAccess r) (vAddr,a,rwe) A (ofsLEq r) (vAddr,a)) -

_-d4vToR r vAddr tbiPtr mere = let a -- (fetch r) (mem,(address r r)((wordn r 1), (add _

r)(segldshfr vAddr,tblPtr))))in (address r) ((add r) (segOfs r vAddr, a))

I-d4superMode r vAddr rwe tblPtrADDR tblPtr data mem : ((wBIT rwe) A (addrEq r

(vAddr,tbiPtrADDR))) -,(T, vAddr, data) -- (T, vAddr, tblPtr)

_-_4userMode r vAddr rwe tblPtrADDR tblPtr data mem : iegaiAccess r vAddr tblPtr rwe

mem _(T, (vWoR r vAddr tblPtr mem), tblPtr) -- (F, vAddr, tblPtr)

l--_4mmu.spec r vAddr rwe tblPtrADDR tblPtr data mem superv = superv _superMode r
vAddr rwe tblPtrADDR tblPtr data mem -- userMode r vAddr rwe tblPtrADDR tblPtr data mem --=

3rd NASA Symposium on VLSI Design 1991 8.3.5

2.2 Implementation

The implementation is constructed from electronic block model components. These are

defined as specifications for the behavior of a gate level implementation. Many of the

devices specify their timing behavior as well. The building blocks consist of a security

comparison unit, an address match unit, a memory fetch unit, an adder, registers, latches,

muxes, and a control unit. Most of the device definitions are straight forward with the

exception of the memory and the control unit. These two units will be described in greater

detail.

_de/ secUnit_spec r a b rwe ok = V t. ok (t+l) =
((validAccess r) ((a t),(b t),(rwe t)) A (ofsLEq r) ((a t),(b _)))

_de] addUnit_spec r a b c = V t:num, c (t+l) = (add r ((a _),(b t)))

_de] muxUnit_spec r a b out w =V t.(out(t+l))=(w(_+1)) -* address r(b(t+l))l(a t)

_dcl mux3Unit_spe¢ a b ¢ out w = V t:num.

(out t)=(W t = 0)-* a t I (. t = 1)-* b t] c t

_d_1 splitUnit-spec r virt id ors = V t:num.
((id _) = (segldshf r) (rift t)) A ((ors t) = (segOfs r) (virt t))

d latchUnit_spec r i out ctrl = V t:num.
out (t+l) = ctrl (t+l) -* out t I (i (_+i))

_de! regUnit_spec r i Id clr out =
(V _:num. out(t+l)=(clr t-_ (wordn r 0) I ld t -* i tl ou_ t))

A (out 0 = (word_ r O))

kd,! matchUnit_spec r a b m = V (t:num). m(t+l) = (addrEq r (a Z, b Z))
-, T I Y"

Memory Unit

As a first step towards composing devices, the memory specification used for the MMU

verification is significantly expanded from the model used in [3]. The earlier model assumed

a read-only memory that returned a value one clock cycle after a request was made. The

new model defines asynchronous read and write operations. This model makes an implicit

assumption that each memory request is satisfied before the next request is generated.

Most of the new proof effort centered on establishing the correctness of the MMU control

unit with the new memory specification.

d memoryUnit_spec r req rwe addr data done mem =

(done 0 = F) A

(V t. (req t) -_
(3 t'. Next done (t, t+t') h

(wBIT (rwe Z) =>
((mem (t+t') = store r (mem t,addr t,da_a _)))

((data (t+t') = fetch r (mem t,addr t)) A

(mem (t+t') = mem t))))
I

((done (t+l) = F) h

(mem (t+i) = mem t)))

Control Unit

To process each memory request, the control unit will pass through several clocked

phases. At each clock tick the control unit may change its phase depending on the results

computed by the other internal units and the MMU input from the system bus. The control

unit state is maintained by the variable phase. There are six distinct phases, however,

8.3.6

not all phases are executed for each request. Which phases are executed depends on the

validity of the memory request. Request evaluation begins with the control unit in phase

0 and completes when phase 0 is again reached. A valid request will require five phases

with a delay of at least one time unit before each phase change.

vAddr : -

ie|Ofl

d,ts

Adder

R-W1 $ ity J ['_'_
Compnre

Unit

slper

fdone

nddresS 1
e6mpare
unit

done
ACK
RWB

rAddr

Figure 1: Abstract MMU Internal Block Diagram

The dataPath definition describes the interconnection between all the units other than
the control unit_

d dataPath r vAddr vData two mem tblPtrADDR tblPtr rAddr muxC

tmpC tbiC iC rReq xlat match sec0K fdone

3 (muxl mux2 id ors add0ut data lat0ut secData.

(regUnit_spoc r vData tblC bitFalse tblPtr) A

(regUnit_spec r data tmpC bitFaise secData) A

(secUnit_spe¢ r vAddr secData rwe sec0K) A

(splitUnit_k_bc r v_Fdridofs_ A

(mux3Unit-_pec id ors (0neUn_it_spec r) muxl muxC) A

(mux3Unit_spec tblPtr data lat0ut mux2 muxC) A

(addUnit_spec r muxl mux2 add0ut) A

(latchUnlt_spe¢ r add0ut lat0ut IC) A

(matchUnit_spec r vkddr tblPtrADDR match) A

(muxUnit_spec r vlddr lat0ut rAddr xlat) A

(memoryUnit_spec r rReq rlddr data fdone mem)

=

E

E

The implementation definition connects the datapath with the control unit. The state

consists of the table pointer register value, the security Data register and the control unit

phase (tblPtr, secData, phase). The input envirdnment-]s provided by the system bus

and the memory (vAddr, vData, rwe, superv , reqIn, mere). The output environment

includes a real address and several control unit outputs (rAddr, done, ack, xlat). The

memory address of the table pointer register is specified by the constant tblPtrADDR.

Correctness Statement

Several auxiliary definitions are used to express the final correctness statement. To

relate the implementation to the specification, a temporal abstraction is constructed using

the two predicates Next and First[9]. The predicate First is true when its argument t is

the first time that g is true. The predicate Next is true when t2 is the next time after tl

3rd NASA Symposium on VLSI Design 1991 8.3.7

_de! ¢ontrolUni__spec reqIn super rwe ma_ch secOK fdone muxC tmpC tblC

IC rReq xla_ done ack phase =

((muxC O,tmpC O,tblC O,IC O,rReq O,xlat O,done O,ack O,phase

0)=(0,F,F,F,F,F,F,F,0))
A

(V t .(muxC(t+l),tmpC(%+l),tblC(t+l),iC(_+l),rReq(t+l),xlat(t+l),done(t+l),

ack(t+l),phase(t+1)) = _ M t % 1 r x d a P

(phase t = O) -* (reqIn I; -*

(phase ¢ -- 1) -* (super t -_
((wRIT (rwe %)) A match t) -_

((phase % = 2)

((phase t = 3)

(phase t = 4) -*

A fdone %) -*

A fdone _) -* (secOK s

U mba eloc H X
X pl% qtnk A

(O, F,F,F, F,F,F,F, I) I

(0, F,F,F, F,F,F,F, 0)) I

(0, F,T,F, F,F,F,F, 5)
(O, F,F,F, F,F,T,T ,0)

(2, T,F,T, T,T,F,F, 2))
(1, F,F,F, T,T,F,F, 3)

(O, F,F,F, F,T,F,F, 4)

(O, F,F,F, F,F,T,F, 0))

(O, F,F,T, F,T,T,T, O)

(phase % = 5) -_ (0, F,F,F, F,F,T,T ,0)

(muxC t,%mpC %,tblC t,lC t, F ,xlat t,done t,ack %,phase %))

that 9 is true. The predicate stable_sigs states that between tl and t2 the MMU inputs

will remain constant.

_a,] First g t = (V p:time, p<t _ _(g p)) A (g t)

5d4 Next g (_1,%2) = (_1<%2) A

(V %:time . tl<_ A t<t2 _ _ (g t)) A (g t2)

5d4 stable_sigs tl t2 vlddr rwe tBIPtrADDR data

mem super = V _'. tl < %' A t' < Z2

(super t' = super tl) A (vAddr %' = vAddr tl) A (rwe t' = rwe %1) A

(data t' = data tl) A (thlPtrADDR t' = %blP%rADDR tl) A (mem %' = mem tl)

The correctness theorem states that if the implementation is in phase 0 and a memory

request is made, the implementation will eventually respond (c time steps later), when

the state of the implementation matches the state defined by the specification for a set of

given MMU inputs. The inputs must remain stable until the MMU responds to a request.

If a memory request is not made, the acknowledgment line remains F, the phase remains

0 and the MMU table pointer register remains unchanged.

mmu_imp r vAddr vData rwe super tblPtr _blPtrADDK
reqIn rAddr done ack xlat mem phase

(V %. (phase t = O)

(reqIn t -*

(3 c. Next done(t,t + c) A (phase(t + c)=O) A

(stable_sigs t (t + c) vAddr rwe _blPtrADDR

vDaZa mem super

(mmu_spec r (vAddr t) (rwe t) (tblPtrADDR t)

(%blP_r t) (vData t) (mem t) (super %)

= ack(t + c),rAddr(t + c),tblPtr(t + c))))

I ((ack(% + 1) = F) A
(phase(t + 1) = O) A

(_blP%r(t + 1) = %blP_r t))))

8.3.8

3 Memory Subsystem

_n {ni{ia/design integrate_aFIF(Ycacl_e stack inside: tlie MMU but here We model a tuUy

associative cache as part of the memory subsystem. The cache is described as a lookup

table and implements a least recently used (LRU) replacement strategy. Each table entry

consists eta key, a related data word, and a boolean indicating whether the entry is active.

We w_ first describe=the SpedfiCation of the L_U repiacement strategy in HOL, followed

by the cache impiementafion.

TAB_ENTRY = ":boo!#*address#*wordn": type

Pdel live entry = (FST entry)

Pa,! k'y entry = (FST (S_D entry))
_d content entry = (gND (S_D entry))

Severai auxi_ary (recurslve) dei_nltions describe table operations below. When an entry

is inserted into the top of table, the entry at the bottom will be lost only when the table

is "full" (all entries are live). In this respect, the table acts as a qttette.

P_,] (TAB_FULL _bl 0 = live (EL 0 tbl)) A

[-,/4 {T-AB_I-_-SE-RTtbl entry 0 = [entry]) h

(TAB_IISERT tbl entry (SUC n) = (APPEND (TAB_IHSERT tbl entry n)

((TAB_FULL tbl n) -_ [(EL n tbi)] [[(EL (SUC n) tbl)])))

A table lookup is successful if there is a key match for one of the entries. For a table

size of n, TAB_HIT returns (SUC n) if the lookup fails.

(live(EL n _bi) A ((addrEq rep) (key(EL n _bi), Sg))) z

_d,/ (TAB_HIT rep tbl sg m 0 =

((KEY_MATCH rep _bl sg O) -_ O [(SUC m))) A

(TAB_HIT rep _bl sg m (SUC n) =

((KEY_MATCH top t%l sg (SUCn)) -_ (gUC n) i TAB_HIT rep rbi sg m n))

Frequently, a single matched entry must be {nV_dated. 'r_h_s can occur clue to the LRi]

policy or a memory write operation. Occasi0nal/y, the entire cache:must ge_ny_dated at :

the request of the operating system. The LRU policy requires that if a key match occurs,

the entry be inserted at the top of the table. By invalidating the matched entry before

the insertion, a table overflow will not occur. LRU_L00KUP returns the requested data value

and the updated cache table.

mz

L--

3rd NASA Symposium on VLSI Design 1991 8.3.9

_de! ENTRY_INVALIDATE entry = (F ,key entry, content entry)

_a4 (TAB_INVALIDATE tbl 0 = [(ENTRY_INVALIDATE (EL 0 tbl))]) A

(TAB_INVALIDATE tbl (SUC n) =

(APPEND (TAB_INVALIDATE tbl n) [(ENTRY_INVALIDATE (EL (SUC n) %bl))]))

Fd4 (DEL_TAB_ENTRY rep tbl sg 0 =

((KEY_MATCH rep tbl sg O) -_ [(ENTRY_INVALIDATE (EL 0 %bl))] [

[(EL 0 tbl)])) A

(DEL_TAB_ENTRY rep %bl sg (SUC n) =

(APPEND (DEL_TAB_ENTRY rep tbl sg n)

((KEY_MATCH rep tbl sg (SUCn))

__ [(ENTRY_INVALIDATE (EL (SUC n) %bl))]

[[(EL (SUC n) %bl)] 111

?d4

entry n

5d4 LRU_LOOKUP rep mem tbl n addr data newTbl =

le% who = (TAB_HIT rep tbl addr n n) in

((who = (SUCn))

-_ (data = fetch rep(mem, addr)

LRU_REPL rep %bl entry n = TAB_INSERT (DEL_TAB_ENTRY rep %bl (key entry) n)

A

newTbl = TAB_INSERT tbl (T,addr,(fetch rep(mem,addr))) n)

(data = (content (EL who %bl) A

newTbl = LRU_REPL rep tbl (EL who %bl) n)

Using the above definitions, the cache-memory subsystem can be defined. This defini-

tion replaces momoryUnit_spec in the MMU specification and the new system is verified

in a similar manner. The proof shows that the cache/memory system is consitent with the

MMU memory model requirements.

5de! cache_mem_spec r req rwe addr data done mem %bl n =

(done 0 = F) A

(V %. (req t) -_

(3 %'. Next done (t, t+%') h
(wBIT (rwe t) =>

((mem (t+t') = store r (mem %,addr t,daZa t)) A

(tbl (t+t') = DEL_TAB_ENTRY r (tbl %) (addr %) n) I

(LRU_LOOKUP r (mem t) (tbl t) n (addr %)
(data (%+t')) (tbl (%+t'))) A

(mem (t+t') = mem t))))

((done (%+1) = F) A
(mem (%+1) = mem %) A

(tbl (t+l) = tbl t)))

Cache Implementation

The cache implementation consists of a control unit and a stack of cache cells. Cache

cells are the instantiation of the table entries described above--their state consisting of

8.3.10

found above dolt

found dat6

r *

Figure 2: Cache Cell Stack

the three {up_lei (valid, address key, data). The action of each cache ceil is defined by a

two bit rune,ion code (req) sent by the cache control unit. The stack is formed by joining
the outputs of a cache unit to the inputs of the next.

F_ 4 (cache_block r state req sparceIn foundIn addr repiState dataIn 0 =

A cache_cell rep 0 req addr repiState (state,sparceIn,foundin.dataIn))

(cache_biock _ep s%ate roq Spa_ce_nToun_n addr repiState datain (SUC n) =
(cache_cell rep (SUC n) req addr (EL n state)

(cache_block rep state req sparceIn foundIn addr replState dataIn n)))

Fd4 cache_cell_spec rep n req addr replState (sta_eIn,sparceIn,foundIn,dataIn) =
let state = (EL n stateIn) in

let match = (addrEq rep(addr,key state) A live state) in
(req = (F,F)) -. _ IDLE

(stateIn, foundIn, (sparceIn V *live state), dataIn) J
(req = (P,T)) -_ _ INVALIDATE ON MATCH

(match -_

(SET_EL n s_a_eIn(F,key state,content state), T, T, content state) I
(stateIn, foundin, (sparceIn V "live state), dataIn)) J

(req : (T,F)) -_ Z INVALIDATE

(SET_EL n stateIn(F,key state,con_ent state), foundIn, T, dataIn) J
re = (T,T) -_ PUSH DOWN

(sparceIn

(s_a%eln, fO_u-ndin, T, content state) I
(SET_EL n stateIn repIState, foundIn, F, dataIn))

When a memory request is made, the control unit signals each cache cell to invalidate

its entry if its key matches the input address (17, T). Memory write requests are also passed

through to memory. If a read request is pending and the value is not in the cache, the

value is fetched from memory. We assume one clock cycle is needed to read a value out of

the cache if it is available. After the value fetch step is completed, the control unit pushes

the new value onto the cache cell stack by issuing request (T,T).

3rd NASA Symposium on VLSI Design 1991 8.3.11

To model memory, the cache implementation uses the same memory unit specification

(momoryUn±t_spoc) stated previously. We then verify that the implementation behaves

as specified. The implementation also provides a means of invalidating the entire table

(request (T,F), however, this function is not present currently in the specification.

4 Summary

We have described the formal verification of an MMU and cache/memory subsystem.

The MMU has been verified to perform correctly with an asynchronous memory model.

The cache specification defines an LRU replacement policy which is implemented by an

electronic block level design. The cache is also demonstrated to be consitent with MMU

memory model requirements.

It has been convenient to represent the behavior of devices using abstract representa-

tions. This mechanism allows the verification effort to focus on the correctness of higher

level abstraction. To verify a more concrete implementation, the abstract representation

can be instantiated with components that implement concrete behavior. Extending this

example, we plan to demonstrate how a complete system composed of many devices can

be shown to correctly implement an abstract system specification.

References

[1] W. R. Bevier, "Kit and the Short Stack," Journal o/Automated ReaJoning, vol. 5,

1989.

[2] M. Gordon, "HOL: A Proof Generating System for Higher-Order Logic," in VLSI

Specification, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam,

eds.), Kluwer Academic Press, 1988.

[3] E. T. Schubert and K. N. Levitt, "Verification of Memory Management Units," _nd

IFIP Working Conference on Dependable Computing for Critical Applications., Febru-

ary 1991.

[4] E. T. Schubert, "Formal Verification of an LRU Cache in Higher Order Logic," tech-

nical report CSE-91-, University of California, Davis, September 1991.

[5] W. R. Bevier, W. A. Hunt, and W. D. Young, "Toward Verified Execution Environ-

ments," IEEE Symposium on Security and Privacy, 1987.

[6] A. Cohn, "A Proof of Correctness of the VIPER Microprocessor: the First Level," in

VLSI Specification, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam,

eds.), Kluwer Academic Press, 1988.

[7] W. A. Hunt, "A Verified Microprocessor," Technical Report 47, The University of

Texas at Austin, Dec. 1985.

8.3.12

[8] W. A. Hunt, "Microprocessor Design Verification," Journal of Automated Reasoning,
vol. 5, 1989.

[9] J. J. Joyce; Muiii-ZeveI Verification of ICIicro-processors[3ased Systems. :PhD thesis,
Cambridge University, December 1989.

[10] P.J. Windley, The Formal Verification o/Generic Interpreters. PhD thesis, University
of California, Davis, 1990.

[1i] 3. J. Joyce, "Totally Verified=Systems: Linking Verified Software to Verified Hard-

ware," Hardware Specification, Verification and Synthesis: Mathematical Aspects, July
1989. _

=

[12] E. T. Schubert, "Verification of Memory Management Units using l:IOL," technical

report C$E-90-27, University of California, Davis, August i990.

|
m

m-

